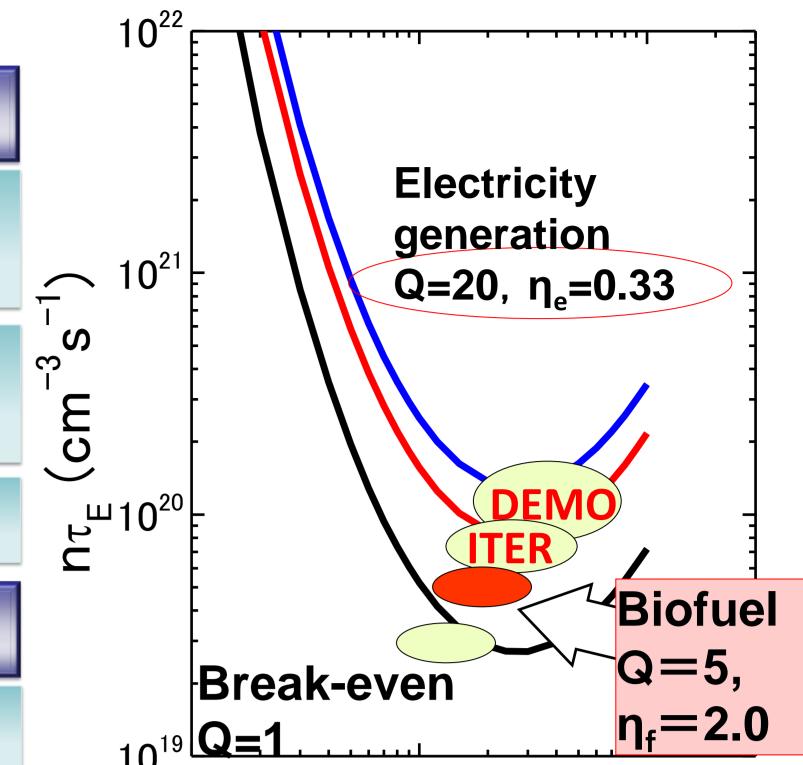


Design Studies of Innovatively Small Fusion Reactor Based On Biomass-Fusion Hybrid Concept: GNOME

<u>Kenzo Ibano¹, Hiroyasu Utoh2, Kenji Tobita,2 Yasushi Yamamoto¹, Satoshi Konishi¹</u> 1 Institute of Advanced Energy, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan 2 Japan Atomic Energy Agency, Naka, Ibaraki, 311-0193, Japan

Hybrid concept for fusion to produce bio-fuels.

High-temperature heat for an efficient gasification of biomass can be provided from the nuclear fusion reactor.


High energy conversion efficiency of the gasification process reduces the requirement to $Q \sim 5$.

This small-Q reactor can be applied to the fusion-fission hybrid designs.

TF Coil designs

Design strategy

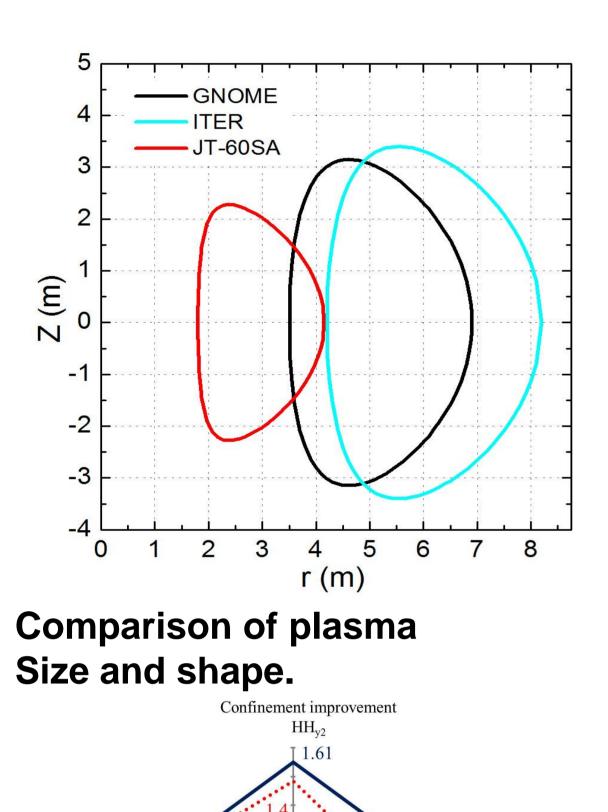
Enough space of BLK for TBR & CS (r = 1.5 m) for the start-up.

S

E

U

က


ITER-like Nb₃SnTF coil in order to reduce the construction cost.

 $Q \sim 5$ with safety factor $q_{\text{MHD}} > 3$.

100 10 T (keV) **Target area of the GNOME** reactor at the Lawson diagram.

Plasma parameter and designs

Normalized density

Noninducive

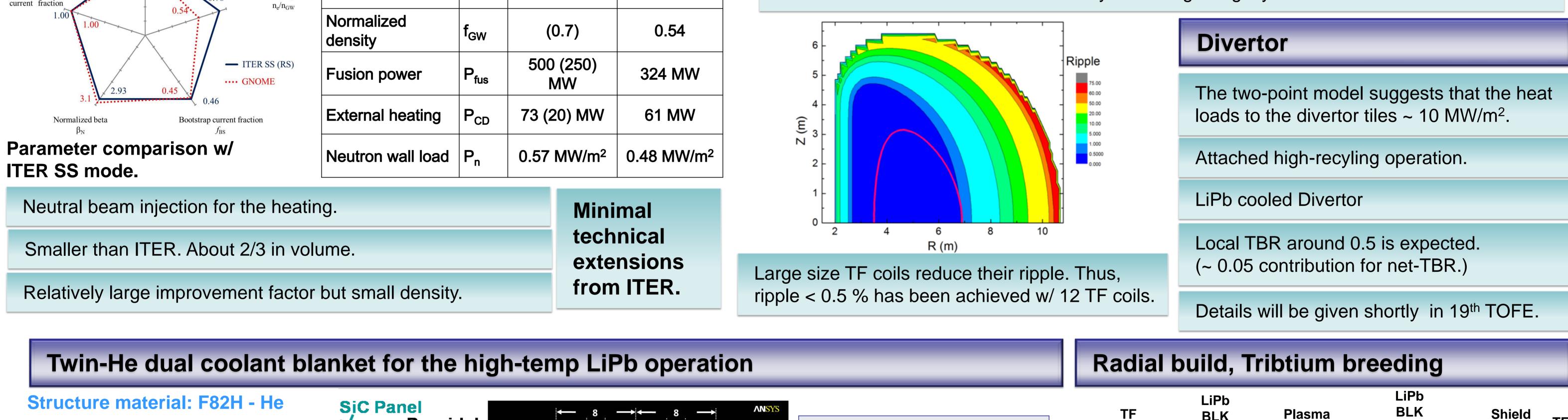
Designed plasma parameters

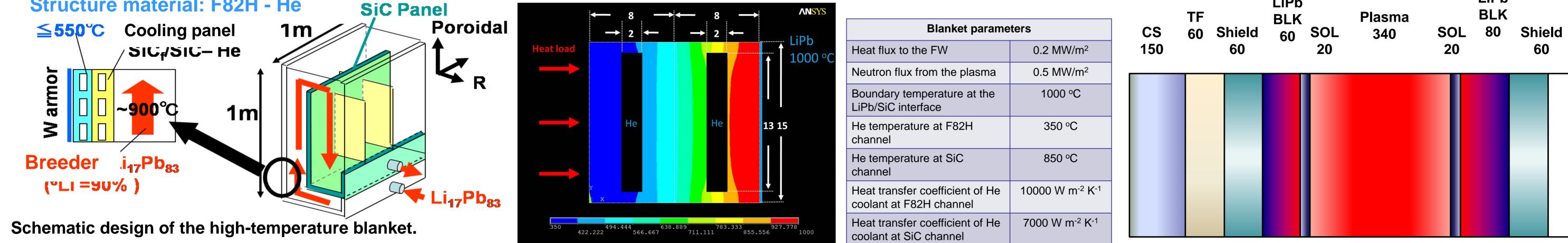
	- 1	ITER	GNOME	
Major radius	R _p	6.2 m	5.2 m	
Minor radius	a _p	2 m	1.7 m	
Aspect ratio	Α	3.1	3.1	
Plasma volume	V _p	837 m ³	547 m ³	5.
Plasma current	I _p	15 MA	10.4 MA	
Toroidal field	B _t	5.3 T	4.4 T	
Average temperature	<t<sub>e></t<sub>	8.9 keV	13 keV	
Confinement improvement	HH _{y2}	(1.0)	1.4	
Normalized beta	β _N	(1.5)	3.1	

GNOME (m²) ITER (m²) 0.45 0.95 0.35 0.99 0.36 0.36 0.36 1.67 3.01 Coolant nsulator Superconducting wire Structure material Copper

Coil Parameters				
	ITER*	GNOME**		
# of TF coils	18	12		
Type of SC strand	Nb₃Sn	Nb₃Sn		
Maximum field	11.8 T	11.5 T		
Operation current	68 kA	100 kA		
Operation strain	~ 0.77%	~ 0.79%		
Width	9 m	9 m		
Height	14 m	13.3 m		
Magnetic stored energy	41 GJ	29 GJ		
Number of turns	134	96		
Breakdown voltage	3.5 kV	20 kV		
Allowable stress (S _m)	668 MPa	800 MPa		

* ITER Technical Basis (2001) ** SCONE code, H. Utoh and et al., JAEA(2009)


TF


60

210

Composition of materials was determined through calculating the EM stress on materials and the heat balance at the quench.

Increased SC wire rate was achieved by assuming a slightly increased allowable stress.

Both He and LiPb work as coolant. (dual-coolant.)

In order to achieve a high-temperature LiPb operation, SiC insulator panel is needed.

Twin He channels for Steel and SiC panels are assumed which result a reduced wall thickness.

566.667 855.556 A calculated 2-D temp distribution of

twin-He dual coolant Blanket wall.

coolant at SiC channel	
Thermal conductivity of F82H	33.3 W m ⁻¹ K ⁻¹
Thermal conductivity of SiC	20 W m ⁻¹ K ⁻¹

Designed radial build of the GNOME reactor.

Liquid LiPb blanket with 90% Li-6 enrichment, the net-TBR of 1.05 achieves if the BLK coverage is >75 %.

Total irradiation will not reach 1*10²² neutrons/m² (ITER) guide line value for coil life time) until 40 years.

< 550 °C during the operation w/ 1000 °C LiPb.

A high temperature He output is achieved from the SiC_f/SiC panel.

Calculations by ANSYS show that the F82H steel vessel could be

Summary and conclusion

Based on the biomass-fusion hybrid concept, a Tokamak reactor without any major technical extensions from ITER was designed.

Equilibrium, stability and external heating analysis as well as its divertor operation and component designs will be given shortly.

Acknowledgement

This work was supported by Global COE program of Kyoto Univ. "Toward Zero-emission Energy System"

26th Symposium on Fusion Technology, 9/27 -10/1 2010, Port, Portugal